Global Precipitation Measurement

System Requirements Review
Operations and Ground System Development

Tim Rykowski 301/286-2460 tim.rykowski@gsfc.nasa.gov Goddard Space Flight Center

June 4 - 5, 2002

PRECIPIT

• AGENDA:

- Functional Architecture
 - Description of each element
- Ground System/Mission Operations Driving Requirements
 - Mission Operations
 - *Instrument Operations*
 - Space/Ground Communications
- Other Key Requirements/Assumptions
- Operations Concept
- Results of Trade Studies
- Technologies Required
- Requirements Verification Strategies
- Additional Trade Studies to Conduct
- Risk Assessment
- Schedule
- Issues and Concerns

White Sands Complex:

CMD&TLM

Short Term data storage

Instrument Science **Teams**

Instrument commanding Instrument performance Ops coordination

Mission Ops Center (MOC) (@ GSFC)

RT health/safety processing Space-Ground Protocol Processing Commanding **Trending**

Mission scheduling Instrument data handling

> Instrument HK data Status Command Loads Ops Coordination data

Precipitation Processing System (PPS)

(@GSFC)

Science scheduling Archiving **Guest Observer Support**

Standard product processing

L0 Science data

- · NRT data
- 3 hour products
- · 24 hour products

Products to users

Tracking Data Relay Satellite System (TDRSS)

- Provides forward link, and near-continuous return link capability for GPM Core and Constellation spacecraft

• TDRSS Ground Terminal (TGT/White Sands, NM)

- Receives return link from and uplinks forward link data to TDRSS constellation
- Demodulates, bit synchronizes telemetry
- *Electronically interfaces with MOC to:*
 - Receive commands
 - *Deliver telemetry (using IP routing information)*
- Provides short-term telemetry storage to protect against data loss during communications link outages

Mission Operations Center (MOC/GSFC)

- Provides all facilities necessary to support spacecraft operations
 - Real-time housekeeping data processing
 - Health and safety assessment
 - Generation, uplink, and verification of commands
 - SN, spacecraft, and instrument planning and scheduling
 - Flight Dynamics support

- Mission Operations Center (MOC/GSFC) (cont.)
 - Receives telemetry from TGT
 - Performs protocol processing to "close" space-ground protocol
 - Interfaces with PPS to deliver 1-minute science instrument files, housekeeping data
 - Interfaces with Instrument Science Teams to receive commands, command requests

• Instrument Science Teams

- Perform detailed health assessment of instruments
- Generate instrument command loads as required

Precipitation Processing System (PPS)

- *Creates higher-level science data products*
- Delivers science data products to user community

Ground System/Mission Operations Driving Requirements

0

Σ

~

Δ

A

8

0

Level 1 Requirements

- S/C Operations
 - Health & Safety, CMD & TLM
 - Data Handling Flight Software
- Instrument Operations
 - Commanding Performance Monitoring
- Space/ Ground Link
 - CMD & TLM Data Rates Data Loss Allocations
 - Contingency Operations

- Mission Operations
- [6.3.1]
- Provide Standard MOC functionality [6.3.1.1, 6.3.1.9]:
 - Monitor health and safety of GPM spacecraft and instruments
 - Maintain flight software [6.3.1.10]
 - Monitor telemetry and send commands
 - Provide activity scheduling
 - Provide Flight Dynamics Support
 - Support spacecraft and subsystem performance evaluation and assessment
 - Store HK telemetry for mission lifetime
 - Store science data short-term to support retransmissions to PPS

– Interfaces:

- Receive telemetry from/send commands to space/ground link [6.3.1.4]
- Receive command loads/coordinate special operations with instrument ops teams [6.3.1.8]
- Deliver science data to PPS [6.3.1.5]

- Mission Operations [6.3.1]
 - Availability [6.3.1.2]
 - Normal Operations: 98%
 - Can be satisfied with single-string ADPE equipment
 - Critical Operations: 99.95%
 - Requires Fault-tolerant system implementation (simultaneously operating parallel strings or "hot-backup")
 - Data Loss [6.3.1.7]
 - Allowable loss of less than 1% of GPM instrument data
 - Based upon experience with previous missions

- Mission Operations
- [6.3.1]

- Data Delivery
 - Implement the ground component of the retransmission protocol [6.3.1.6]
 - Deliver 1-minute science instrument files to the PPS in:
 - Near real-time for all files received in initial transmission [6.3.1.5.i]
 - Satisfies Level 1 requirement for "best effort" NRT delivery
 - Every 3 hours, incorporating retransmissions [6.3.1.5.ii]
 - Satisfies Level 1 requirement for 90% quick-look data recovery
 - Every 24 hours, incorporating all retransmissions [6.3.1.5.iii]
 - Satisfies Level 1 requirement for 98% science data recovery
 - Maintain quality and accounting statistics describing instrument files received, instrument files delivered to PPS, and instrument data retransmitted. [6.3.1.12]

• Instrument Operations:

- [6.3.2]
- Generate command loads and software loads [6.3.2.1]
 - Provide to MOC for uplink as required
- Evaluate instrument performance [6.3.2.2]
- Coordinate special operations with MOC [6.3.2.3]
- Maintain flight software for each instrument [6.3.2.4]

Space/ Ground Link:

[6.3.3]

- Space Network (SN)
 - Provide continuous return link coverage using Demand Access Service (DAS)
 [6.3.3.1]
 - *Derived from L1 rgs 3.1.3 and 3.4.1*
 - DAS Data Rates [6.3.3.2]
 - 300 kbps return for Core Spacecraft, 30 kbps for Constellation spacecraft
 - 2 kbps for commands
 - Provide scheduled (single-access) forward and return link services [6.3.3.3]
 - Provides support for large command loads, recovery from large data losses
 - SSA Data Rates [6.3.3.2]
 - 1.4 Mbps return for Core Spacecraft, 180 kbps for Constellation spacecraft
 - 16 kbps for commands
 - Provide return link data to GPM MOC in near-real-time [6.3.3.4]
 - Record all return link data and retain for minimum of 72 hours [6.3.3.5]
 - Allowable data loss of less than 0.5% [6.3.3.6]

Space/ Ground Link:

[6.3.4]

- Ground Network (GN)
 - Receive recorded telemetry from core, constellation spacecraft [6.3.4.2]
 - Data Rates: [6.3.4.1]
 - 4 Mbps return for Core Spacecraft, 1.5 Mbps for Constellation spacecraft
 - Above data rates supported by selected NASA stations, USN
 - Maximum possible S-band rate required to ensure maximum data recovery under contingency operations
 - Uplink commands to core, constellation spacecraft @ 2 kbps [6.3.4.4]
 - Provide real-time data to GPM MOC without delay [6.3.4.3]
 - Real-time data limited to S/C, instrument HK. Instrument telemetry would be store and forward.

Other Key Requirements and Assumptions (1 of 2)

Core Spacecraft Data Rates:

- Data rate for Core Spacecraft is ~250 kbps, based on the following requirements/assumptions:
 - 95 kbps for Precipitation Radars,(2) [5.3.14.6]
 - 15 kbps for GPM Microwave Imager [5.3.14.7]
 - 25 kbps for instrument of opportunity [5.3.14.8]
 - 12 kbps for spacecraft housekeeping data
 - Additional 4% on all data estimated overhead for IP protocol.

• TDRSS DAS available for approximately 96% of the orbit:

- There will be some small outages due primarily to TDRSS handovers, and interference with DSN operations.
- Data will be stored on-board spacecraft and retransmitted using space-ground protocol.
- Bit Error Rate: Provide 10⁻⁸ BER 99% of the time [5.3.15.5]
- Given above assumptions, DAS provides sufficient bandwidth to support real-time transmission for Core spacecraft, and recover 35 minutes of data in 12 hours.

Other Key Requirements and Assumptions (2 of 2)

• Instrument Operations:

- Instruments operate in survey mode, with minimal command support required from the ground:
 - *No target of opportunity operations*
 - Occasional software changes, table loads, and calibrations are expected.

Spacecraft Operations:

- Spacecraft performs autonomous orbit stationkeeping maintenance [5.3.13].
- Yaw maneuvers are planned and executed by mission operations staff
 - Frequency expected to be 30-45 days
- Spacecraft Flight software monitors all major subsystems and autonomously performs safing.

MOC equipment/facilities

- Core and Constellation spacecraft are operated from the same MOC system.
 - Decision will be revisited upon selection of Constellation spacecraft supplier.

Mission Operations Concept

- Mission Operations is straightforward and can be accomplished using an 8x5 staffing profile (day shift, weekday only)
 - Limited commanding required
 - Instruments operate in survey mode and require little commanding from ground
 - 1-2 command loads per week expected to be sufficient to control instrument/spacecraft activities.
 - Data Management Operations simplified through use of IP protocol
 - Significantly simplifies Solid State Recorder management
 - Retransmissions are automatically performed through uplink of appropriate protocol directives
 - Solid-state recorder management does not require labor-intensive effort from FOT personnel.
 - Similar operations staffing approach used successfully on several current similar missions (such as IMAGE, MAP, SMEX)
 - Technology exists allow unstaffed operations on off-shifts
 - Paging support available, successfully used on previous missions.

- Routine operations activities described for the following MOC operations:
 - Real-time telemetry processing
 - Planning and Scheduling
 - Commanding
 - Flight Dynamics
 - Science Data Receipt, Processing and Delivery
 - Data Recovery
 - Telemetry
 - Commands
 - Other

Real-Time Telemetry Processing

- Spacecraft:
 - On-board telemetry processing/monitoring is performed for all key spacecraft subsystem and instrument parameters
 - Safe-hold is autonomously executed if significant problem detected
- *Ground System/MOC:*
 - *Prime shift operations:*
 - Spacecraft housekeeping data is received near-continuously, and is processed to determine health and safety of spacecraft
 - MOC automatically monitors telemetry for out-of-limit conditions
 - Appropriate mechanisms are used to notify FOT personnel, such as audible tones
 - Spacecraft engineer(s) review data to determine appropriate response to anomalies
 - *Off-shift operations:*
 - Spacecraft housekeeping data is received near-continuously, and is processed to determine health and safety of spacecraft
 - On-call FOT personnel are automatically paged upon occurrence of pre-defined outof-limit condition.

Operations Concept -- Routine Operations (3 of 9)

Planning and Scheduling

- *Instrument operations:*
 - Planned by instrument teams in coordination with project scientist
 - Types of operations (may not apply to GMI instrument):
 - *Instrument calibrations (expected ~weekly for Precipitation Radar)*
 - Software changes
 - Table loads
- *Spacecraft operations:*
 - *Planned by spacecraft engineer(s) within MOC*
- Integrated timeline created by MOC planners to integrate spacecraft and instrument plans
 - Conflicts, if any, are identified, and resolved with instrument teams (conflicts are expected to rarely occur).
- *Ground system:*
 - Schedule requests for forward link, return link services are coordinated by MOC planners through Network Control Center.
 - Forward link services scheduled include normal command load activity plus retransmission requests.

• Commanding:

- *Spacecraft/instrument operations:*
 - MOC personnel create/format command loads and uplink them during a scheduled TDRSS forward link session
 - Simple instrument commands are directly generated by MOC personnel after coordination with instrument team
 - More complicated instrument commands (such as software uploads) are created directly by instrument teams and sent to MOC, where they are integrated with spacecraft command loads.
 - Command load frequency expected to be 1-2 loads per week.
 - Spacecraft/instrument commands require "person-in-the-loop" to initiate uplink
- *Retransmissions of data:*
 - Commands requesting retransmission of partially received/unsuccessfully received files are automatically generated by space-ground protocol, and uplinked approximately every 3 hours per TDRSS schedule
 - Retransmission requests are delivered autonomously to spacecraft, without "person-in-the-loop"

Operations Concept -- Routine Operations (5 of 9)

• Flight Dynamics:

- Most of routine Flight Dynamics operations are performed autonomously by spacecraft:
 - *GPS* sensors used to provide on-board orbit data.
 - Attitude sensors control spacecraft attitude
 - Autonomous orbit maintenance (stationkeeping) planned for GPM
 - Can be overridden/turned-off via ground control as necessary
- FOT personnel perform following activities:
 - Calculating predicted orbit for use in determining advance TDRSS schedules, and use by
 - *Planning other major maneuvers*
 - Orbit raising maneuvers as required
 - Yaw maneuvers for core spacecraft (to preserve proper solar array pointing)
 - Maneuvers to support instrument calibration as required

Data Receipt

- FOT personnel monitor quality of TDRSS downlink using TDRSS status information as well as quality/accounting data internal to the MOC
 - FOT personnel are paged to respond to significant downlink problems if anomalies occur on off-shifts
- FOT personnel coordinate with TDRSS operators as necessary to resolve large outages.

Data Processing and Delivery

- Return link processing and delivery to PPS occurs automatically, requiring no FOT intervention
- FOT personnel coordinate with PPS, NISN personnel to resolve communications problems when necessary
- FOT personnel initiate manual procedures to re-deliver science data to the PPS, to recover from PPS operational problems.

- Return Link Telemetry: Data Recovery -- Identification of Missing/Damaged Data
 - Software task within MOC will automatically identify portions of files (typically blocks, or packets within blocks) unsuccessfully transmitted from space to ground, using IP protocol information/algorithms
 - Protocol will automatically generate retransmission requests and queue them for uplink to the spacecraft.
 - Spacecraft will queue files during TDRSS handover periods, and deliver when communications are re-established using available bandwidth.

• Return Link Telemetry: Data Recovery -- Requesting/Receiving Retransmissions

- MOC will periodically automatically uplink retransmission requests, and will receive retransmitted data on same link as real-time transmissions.
 - TDRSS Multiple Access (MA) forward and return services will nominally be used
 - Retransmission requests will be delivered in accordance with the established TDRSS schedule, as follows:
 - Every 3 hours, to support creation of the 3-hour PPS product
 - Every 24 hours, to support creation of the 24-hour PPS product
- In cases of severe loss/outage (e.g., an entire TDRSS contact), Operations personnel will manually schedule a TDRSS SSA contact to request retransmissions/redeliver data.
 - Normal MA support will be suspended for the duration of the SSA contact.

Forward Link Commands: Data Recovery

- No special operations performed -- MOC uses guaranteed delivery protocol (TCP/IP) to send commands to the spacecraft in majority of instances
 - Acknowledgement/retransmission of commands occur automatically via protocol

Operations Concept -- Routine Operations (9 of 9)

Other operations:

- Long Term Performance Assessment
 - Spacecraft housekeeping data stored at MOC for the life of the mission
 - Spacecraft engineer investigates long-term performance trends for all major subsystems, develops operational workarounds or procedures as necessary to avoid future spacecraft anomalies where possible
- Clock Correction
 - Time is normally controlled on-board spacecraft through use of GPS receiver
 - Backup procedures will be in place in MOC to perform clock correction if needed (using Network Time Protocol).

SN vs. GN trade study

- Purpose: Determine best approach to providing Space-Ground Communications for GPM primary/constellation spacecraft
- Results: SN exhibits clear advantage for GPM space-ground communications
- Factors:
 - SN provides best solution for satisfying Level 1 requirement for Immediate Products
 - Contact available over 100% of orbit, effective coverage is 96% of orbit with TDRSS handovers
 - GN coverage only provides 9% of orbit given orbit altitude, inclination of S/C
 - Cost:
 - Space-Ground communications cost for Primary/Constellation spacecraft can be satisfied for ~1.5M year.
 - GN solution would be a minimum of 5.5M/year (assuming one contact per orbit per spacecraft using commercial provider).
 - Scheduling Complexity: GN solution much less desirable due to:
 - Potential conflicts for station resources with other spacecraft
 - Operational complexity for scheduling additional contacts/resources

- Full Testing Lifecycle will be used to Verify MOC/Ground System performance prior to launch
- Appropriate Test Plans/Procedures will be documented for each phase of testing
- Ground System Testing goal is to verify performance, functionality of each Ground System Element, and includes
 - Developer Level testing for each component
 - Formal Acceptance Testing of each Subsystem
 - Network Compatibility Tests
- Spacecraft-Ground System Interface Test goal is to ensure compatibility of spacecraft-ground system interfaces, and includes
 - Tests with Spacecraft Simulator
 - Spacecraft Interface Tests (hardline to S/C)
 - Thermal Vac Tests
- Operations Readiness Testing goal is to ensure readiness of FOT personnel and procedures prior to launch, and includes
 - Operations Readiness Exercises, Formal Mission Operations Readiness Tests

- No new technology development is required for GPM
 - Use of Internet protocol for space-ground communications is an adaptation of currently existing operational or prototype technologies and not development of new technology.
- Technology needed to satisfy L2 requirements describing core MOC functionality is currently available.
- Automation/remote access technologies required, and in use in existing control centers, include the following:
 - Paging support (to notify on-call personnel of anomalies, critical events)
 - Remote access to certain control center functions (I.e., trending system) through WWW
 - Automation of "routine" mission operations activities, such as
 - *Delivery of data to PPS*
 - *Creation of long-term trending products*
 - *Creation of flight dynamics products*

- Continue Ground System/Mission Operations Architecture Definition
 - Develop L3/L4 requirements for Ground Segment
 - Develop Ground System/MOC Operations Concept
 - Develop Ground System Reference Architecture
 - Perform Architecture Trade Studies for MOC/Ground System as needed
 - Develop Ground System Product Development Plan
 - Develop Preliminary versions of Interface Control Documents (ICDs)
- Determine approach for providing operations services for Constellation Spacecraft
 - *Options include:*
 - Co-location with Core Spacecraft MOC facilities
 - Separate facility (such as a Commercial Provider)
- Work with GPM partners to explore potential use of TDRSS Demand Access on partner-provided constellation spacecraft
 - Develop a GPM Demand Access User Guide for Partners

Operations Concept Development:

- Need to define operations "coordination" requirements with partner spacecraft operations
 - Constellation satellites launched by international partners
 - Existing satellites
- Current assumption is that partner spacecraft operations contain sufficient facilities for mission operations, and do not depend upon/require any NASA facilities for mission operations.
- Current requirements/operations concept do not assume any "operationally" intensive coordination requirements, such as:
 - Tight formation control
 - Tightly coordinated constellation planning/scheduling activities
 - Constellation performance assessment

- Space-Ground Communications: Use of IP protocol
 - No previous operational experience with use of IP as space-ground protocol, however, risk is mitigated by significant engineering/test that has been performed by many organizations to prove concepts, develop workable approaches
 - Current concept/architecture for space-ground communications requires no new technology development within MOC.
- Mission Operations Architecture: No risks identified
- Mission Operations Staffing Approach: No risks identified.

Ground Systems / Mission Operations

Summary Schedule

5/2/02

CY:	2002			2003				2004				2005				2006				2007			
C1.	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
GPM Milestones	SRI	R					△м	CR		CDR											MR	4	Launch
Ground System Development																							
Milestones				SRR	∠ F	<u></u>			CE	DR				_ M() DR						_ MF	\ RR	
Requirements / System Engineering																							
Design				Pre	elim-			-Critic	cal—/														
Implementation												-I&T	Relea	se—/	_			Final	Relea	se—/			
Space / Ground Link																	-	Testin	9			\	

